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We lay down a general formalism to describe the linear electrohydrodynamic response of systems of arbi-
trary topology, symmetry and heterogeneity, and through an explicit proof, we demonstrate a set of general
Onsager relations between the corresponding electrokinetic coefficients. This generalizes a classical result of
Mazur and OverbeekP. Mazur and J.T.G. Overbeek, Recl. Trav. Chim. Pays-Bas33 (195])] to situations
that may become of practical relevance in particular in the field of microfluidic devices. Technically, our proof
of the symmetry of the generalized conductance matrix relies on an adaptation of the reciprocal theorem of
low-Reynolds-number hydrodynamics.
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I. INTRODUCTION In the present paper, we complete the picture by providing
a generalized explicit proof of Onsager relations between
A few decades ago Mazur and Overbeek proved the exisvarious electrokinetic coefficients, starting from the com-
tence of relations between electro-hydrodynamic couplingsnonly used microscopic equations for hydrodynamics, elec-
in a capillary containing an electrolyte solutiph]. In par-  trostatics and ion transport in dilute electrolyte solutions.
ticular, the magnitude of the electro-osmotic efféte sol-  This proof holds for geometries @irbitrary surface proper-
vent flow generated by the application of an electric figdd ties and shapege.g., arbitrary strength and distribution of
directly related to that of the streaming current effecpres-  the surfacdzeta potential, of arbitrary topologiege.qg., de-
sure drop across the capillary can drive an electric currentices with many inlets that cannot be described simply as
between its endsThis relation holds as a so-called Onsagernetworks of 1D channelsand for variations of the ionic
relation, valid within linear response of fluxes to fields in the concentrations.
vicinity of thermodynamic equilibriun{see De Groot and A motivation for this study is the developing possibilities
Mazur[2]). offered by microfabrication to tailor microfluidic or porous
Formally their result is equivalent to the following state- media of controlled heterogeneity and anisotropy for func-
ment: the matrix that relates, in the linear response regimdjonal purposes such agpumping, flow control, mixing,
the flow of liquid Q and the electrical curremt, through the  separatioh [3—11]. In particular our proof is relevant for
capillary (see Fig. 1, top to the pressure drofip and elec- transverse effects in patterned microchannels, for nodes in
trostatic potential droj ¢ across that channel, circuits of microchannels, and for anisotrogeg., layereg
porous materials.
Q [ —Ap To provide the reader with a flavor of our results, we
Iel _A¢

' (1) provide two examples of consequences of our general ap-
is a symmetric matrixM ,=M,;. The sign convention is

proach(see the bottom of Fig.)1
such thatM is a positive definite matrix.

M1 My
Ma1 My,

Technically the proof of Mazur and Overbeek consisted of ifi’)
three pieces. First they showed explicitly, using coupled local Q
equations for hydrodynamics and electrostatics, that the :é) ()
above-mentioned relation is trder a capillary of arbitrary I
but constant cross section, and of constant surface (zeta el

potential Second, using a general close-to-equilibrium ther-
modynamic formulation, they showed that one should expeci

Py 9
&
such relationgor a channel connecting two points with iden- § - X
P, 4

SR i ) 13
tical ionic concentrationsThis second proof holds regard-

less of the specific description of electrohydrodynamicsPy %

—
within the channel, and regardless of the channel wall prop- § § Q/ T
. - H i ¢ 1
erties. In a third step, they derived subsequent relations for ¢ S ; /1 >
Py %

network of such 1D channels.

FIG. 1. Top: a simple capillary. Bottom: examples of geometries
* Author to whom all correspondence should be addressed. Emadovered by our approach, a 4-branch ndeé) and the unit cell of
address: armand@turner.pct.espci.fr a periodic porous materidtight).
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(@) The linear response of the 4-branch node in Fig. 1, is s  ELECTROLYTE
described(in the absence of applied ionic gradients a o - o SOLUTION
symmetricmatrix relating the flow rate and electrical current
exiting through each branc®, andl, («=0,...,3), to
the pressures and potenti@klative to that of the inlet 0

Apa:pa_po andA¢a: ¢ll_ (bO:

WALLS

L - i PORTS
Q1 M1 My A —Ap:
Q2 Mo Mz o . . || —Ap;
Q3 . .. . o || —Aps FIG. 2. Scheme of a volume of electrolytehite) bounded by
| = —Ad 2 external and internal walléhatchedl, and in contact with the outer
elt ' R . world throughN ports (hereN=5).
| ~Ad II. STARTING POINT: LOCAL EQUATIONS

L 'el3] L 1L 3]

AND NOTATIONS

As depicted in Fig. 2, we consider a dilute electrolyte
with the conservation ruleQo=Q;+Q,+Q3z and lgo  solution in a region of space bounded iy walls (that can
=lentleptles. Our main point is that this matrix is sym- pe internal or externaland (2) N surfacesS, (with «
metric: M,=M,,. So for exampleM 5, which describes =0,... N—1) through which the electrolyte is connected
how an electrostatic potential applied on branch 3 generates the outside, which we will call “ports” or “inlets” indif-

a flow in branch 2(cross channel electro-osmosis equal ferently (N=2 corresponds to the usual case of a simple
to Mg, which describes how a pressure applied on branch 2hannel.

generates an electric current in branch(8oss-channel Bulk equationsThe solvent hostK ionic species of re-
streaming potentil In passing we also clarify when and in spective ionic charge; and local concentration;(x). The
what sense one can usesingle pressurep, and asingle local charge density is thys=ZX;_;xq;c;. The solution is
potential ¢, to characterizethe section of an inlet, and taken incompressible and of viscosity and inertial effects
therefore write compact expressions such as Bgsnd(2).  are assumed negligible. Thus the flow filds given by

(b) Currents through a 3D periodic porous medium, again
in the absence of net ionic gradients can also be described by
Eq. (2), with now theQ, andl, being the flow and elec-
trical current along one of the periodicity directien and V-v=0, )
theAp, andA ¢, being the pressure and potential drop over
a period in this directior{Fig. 1, bottom left. Again cross
effects are related by the symmetry of the matrix.

We take a few steps to obtain these results, and proceed as
follows. ' . . . with p the pressureE=—-V ¢ is the local electric field,

In Sec. Il we define notations and our starting equations, iven by the Poisson equation
We then present their equilibrium solution, and the equationg y q
describing linear response for small deviations from the
equilibrium.

In Sec. lll, we perform a calculation analogous to the
reciprocal theorem of low-Reynolds-number hydrodynamic
which yields the essence of our generalized symmetry proo
at a formal level however.

To make things more explicit and practical, we specialize
in Sec. IV to two casedSec. IV A) a periodic system, and
(Sec. IVB a system with ports or inlets that are either
smooth(so that integral quantities such as potential and pres-
sure are well defined for each of thewr distant from one . ) .
another(compared to the ports diameters of the portge ~ Where #i(x)=ai¢+kgT In(c) is the chemical potential of
then explore consequences of the symmetry proof for thesePecies, andmy its mobility.

V.o+pE=0, 3

where the hydrodynamic stress tensor is

o=—pl+7('Vv+Vv), (5)

eV2p+p=0. (6)
We focus on steady-state situations where the concentra-
ion fieldsc; are governed by time independent conservation
equations for the corresponding currents:

Ji=—mi¢;Vui+cy, (7)

V-ji=0, ®

two cases Let us also introduce, for reasons that will become clear
(Sec. IVO. later,

We close in Sec. V with a summary of our results, a few
pechmcal comments, and connections to related papers in the 1= p— Posmotic=P— kT E ci (9)
literature. i=1K
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oo=—111+ 7('Vv+Vv). (10  with
Equation(3) can be modified to read o=—pl+7('Vv+Vv) (16)
andE=—V ¢, where
V.oo— 2 ¢Vu=0. (12) ¢
i=1K ~ ~
eV2p+p=0. (17)
Boundary conditionsThe above set of equation must be R R R
supplemented by boundary conditions on the walls and on Ji= = M;iCieqV 4i+ CiegVs (19
the ports’ surfaces.
On the walls, we require that there is no ion injection or V'fi=0, (19
absorption, and impose a no-slip boundary condition for the
flow: and also
i . = 12 ~ ~
jilwan-n=0, 12 V’UO_-,ElK CieV f1i =0, (20)

Vlwai =0, 13 N _ N
The boundary conditions are a direct transposition of those
wheren is the local normal to the walloriented outwards for the full problem
from the solution. In principle, we then have to add a

boundary condition for the electrostatic poteniial related filwa,|-n=0, (21
to the local surface property of the wall. This local condition
is typically that the surface potential is imposed or that a V|wan=0. (22)

given surface charge density results in constraints for the

normal gradient of the potential. However, it turns out thatFor reasons stated above we will not explicit the linearized
we need not specify this “electrical geometry” of the prob- electrostatic boundary conditions. Note, however, that this
lem for the proof presented in this paper. Therefore, to limitboundary condition for th@erturbation ofthe electrostatic

the notations we proceed without formally expressing theyotential ¢ is in general homogeneous, with no reference
electrostatic boundary condition on the walls. any more to the surface potential or charge density of the
The last elements to close the problem are the boundaryg|is [this information is now fully contained in the(x)
conditions on the ports surfac&s,, which characterize the fields].
external forcing on the system. Depending on the problem at Thjs set of equationl4)—(22) and the unwritten electro-
hand, these local boundary conditions can be expressed atic boundary condition is now a linear one, whereby the
terms of conditions on either the potentiais,p, ), or the |ocal flows and fields respond in proportion and additively to
fluxes (v,j;), or a combination of both. the effects applied on the ports surfa&s. We will from
The bulk equations together with the boundary conditionsyow on limit ourselves to this linear response regime.
constitute a well-defined problem, whereby the system re- | et ys however point out that the range of validity of this
sponds to the applied forcing described by the boundary conmearization procedure is difficult to express in a general

ditions on the ports surface. Note that this response is inay Formall, we have neglectegE in Eq. (14)

general nonlinear due to the nonlinear couplings in E8s. AA A PO
and (7). —mi¢;Vui+cvin Eq.(18), and— ;-1 ¢V u; in EQ. (20).

It is far from obvious to assert in a general way when those
terms are, at steady state, negligible compared to those linear
in the drivings. Physically, a clear requirement is that the
structure of the charged double layers is only weakly dis-
torted. This translates into the requirement that locally “ap-
plied” chemical potential gradientg¢created by potential
: . . drops or concentration differences between the pdrts
Linear responseTo describe the linear response of the

. ; weaker thaneg¢s/\p and kgT/Ap (where ¢¢ represents a
system, we denote with a hat the perturbations about th{a . X

- ypical surface potential and the Debye length and so

equilibrium values given abovee.g.,V=VeqtV, ji=jiegt],  should the typical local “applied” convective hydrodynamic
etc). We then linearize the equations written above by retam;jra > Im- in these charaed lavers. However these local “ap-
ing only terms that are first order terms in “hat” quantities. goim; g yers. P

We therefore focus on the solutions to the following set ofp“ed quantities may.depequ in a complex fas.h|on on the
equations: macroscopically applied driving. For example in a porous

medium, the local field in a thin slot may be significantly
larger than the macroscopically applied one. In general, the

Thermodynamic equilibriumAt thermodynamic equilib-
rium, the currents and flow are zengq=0, jieq=0, and the
related potentials are spatially homogene®id ;=0 and
V uieq=0, the latter corresponding to Boltzmann distribu-
tions for the ionic concentrationsieq=c?exp(—(qi¢eo)/

(kgT)).

V-0t pEet pef =0, 14 domain of validity of linear response thus depends on geo-
R metrical features of the specific systdiortuosity, surface
V.v=0, (15  charge patterns, ejc.
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Ill. RECIPROCAL THEOREM . . . .
_ _ S ) asmigio- 5 oo
We start by a variant of the reciprocal theorem for zero- «=0N-1 JJs, i=1K

Reynolds-number hydrodynamif$2], adapted to electroki-

netic phenomenén a way related but different than its ad- = f ds( I SRVOEE (,[;,-(z)n-f-(l))).
aptation in the nice derivation of electrophoretic mobilities a=0N-1 JJs, 0 ik !

of particles by Teubnelr13]). We consider two independent 27)
solutions of the linearized problefaround the same equilib-

rium solution, that we design by superscripts) and (2).

These two solutions correspond to different external forc-  Thjs symmetry is actually that of the linear operator re-

ings, i.e., different boundary conditions on the surfaces of th?ating the currentsv and j; through the boundaries of the
ports (for example one could be generated by applied pres- :

sure differences, and the other by potential differences, bityStem. to the generalized foroes and — u; applied there
we need not specify anything at this poirthen thanks to As such this expression is the core of this paper, in a rather

incompressibility for solutior(2): formal presentation _
To get closer to a more operational form such as that

of Eq. (2) in the Introduction, a first step is to explicit for

V(oD -v@)=(v. o). v each port the average values of the driving potentials,
1 and the fluxes emerging from this port. Let us defidg
+5n(‘Vv(1)+Vv(1)):(‘Vv(2)+Vv(2)). =[fs,dSn-v and J;,=[[s dSn-]; the flow and ionic
23 fluxes emgrging from por&, and fla and ;,, the average
values of IT and w; over the port sectiors,. Then the
. . "
Then from Eq.(20), with V u;eq=0: previous equation reads
Loy y@= VaD.y@ - QM — J@ D
(Vo) 80= 3 cio¥ia-V (24) L2, QN a=0§,l:\lfli=l,K @ul
- 1 o2
which can be related to other quantities by +a=0§:§71 ”'S dSn- (a(x) + 11, )M. v
V. (M@ =v o ».j@ - > f f dS( (%) — o] M- §2)
a=0N-1i=1k JJs,
——mec (1), w2 MONTERY )
MiCieqV ii V™ + Vi 7 (Cieg™™) =same formula with(1<2). (28)

(29)

Although this formula appears more cumbersome than the
Srevious oneg(27), we have actually made progress: indeed
the first line is in a form that permits the compact matrix
treatment alluded to in the Introduction, and in the two fol-

where the first equality holds because the ionic currents ar
divergence free.

Using the three results above, the following quantity is
symmetrical in the exchange between supersciiptsand

2): lowing ones appear quantities such[asiI(x)1+1I,1] and
[ i(X)— i,] Which are zero when averaged over the port
areas, .
Vo= 3 |
i=1K
IV. EXPLICIT ONSAGER SYMMETRY RELATIONS
=V (6@ .v)—v.| > L&fm (26) _ _ -
0 il In this section we focus on three situations where these

terms[second and third line of E¢28)] either cancel out or
are negligible compared to those of the first line. If the sys-
The next step consists in integrating these relations oveem s periodic the cancellation is exact, a case treated in

the volume occupied by the electrolyte solution. We trans-sec. |V A. These terms can be neglected in two other situa-
form the integral of divergences into fluxes through the surtions that we analyze in Sec. IVB: systems with “smooth
face bounding the electrolyte. Given the boundary condition$njets” and systems with “long inlets.” In both Secs. IV A
(12) and(13), that apply similarly to the linearized perturba- and |V B we show that a general conductance matrix is sym-
tionsv andj; , the surface integrals over the walls vanish andmetric, and bring the two cases to a common formalism, so
we are left with the fluxes through the ports surfaces onlyas to be able to explore in Sec. IV C in a unified way the
Therefore, the above symmetry, reads in integral form explicit consequences of this symmetry for the two cases.
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FIG. 3. Top viewof a slab geometry with two nonorthogonal FIG. 4. Scheme of media connected to the outer world by

perlodlﬁltyglrect|onsp=b2) arcljd(\j/vgh no ObV'OLIJlS lSyTr&Wetryil Of. theh “smooth sections”(thicker lines of constant surface characteris-
unit cell. The system is bounded by two parallel solid walls in t €tics, so that the potentiald , , u;, are well defined and constant on

third perpendicular direction. The currents are periodic, so the quany section(dashed lings In this specific case there ake=5 ports
tities flowing through the periodic repeats of connecting ports are '

constanthere only the net flov@ is depicted but this holds also for
the ionic currents In contrast the local values of the potentials
increase by a constant value from one unit cell to the next.

[2], Chap. XV}, with the index zero describing global quan-
tities in the system and=1K the ionic speciegalterna-
tively one can describe the solvent explicitly as a species
The reason whyl is the proper “potential” related t@ is

also described ifi2]. Then the linear response of the system
Suppose that the system we consider is actually periodigs defined by

so that we can focus on a unit cell, repeated at distahges
along the vectors, (that need not be orthogonasee Fig. 3. jiy: M, s(— A[Lja) (30)
The system need not have additional symmetries such as
isotropy or centrosymmetry. Obviously the number of peri-with indicesi andj running from 0 toK, andy andé from 1
odicity directionsD is smaller than or equal to the spatial to D, and summation over repeated indices is implicit. The
dimension (typically 3). D=1 corresponds to a periodic minus sign here is such thkt is a positive matri{actually
channel D =2 to a periodic slab geometfe.g., that of Fig. =, 3, (—Ag;,) is the dissipation rate in the system, which
3), andD=3 is a three-dimensional periodic mediusee, s always positivé Equation(29) now reads
e.g., Fig. 1, bottom left

Due to the periodicity of the system, the solutidgand Alli(i)('\/'iy,ja— Mjﬁ,iy)A/}/J(?:o (32)
(2) described in Sec. Il are then also periodic, which actu-
ally means that the velocities and currents are periodic, buvhatever the values of the potential drops, which lead®us

that the potentiald] and z; increase over a unit cell in the the central result of this paper in compact form:
directione, by fixed vzzluesAHAy and A,&iz. As aA conse- My i5=Msi,- (32)
guence, the quantitiglsog(x) +11,1] and [ ©i(X) — ui.] in

Eq. (28) are periodic, so that the terms where they appear
cancel out when summing on the two opposite faces of the
unit cell in a given direction. We now focus on the case of a nonperiodic system, with

So updating the notations in E(28) so thatQY andf]iy N ports, that could be thought of as a complex node in a
are the flow and ionic fluxes through the ports of the unit Ce"network, or maybe a complex subsection of the netweee

: S ; L Fig. 4). To be able to work practically with the integral rela-
Igcmg the directiony, the symmetry relatiof27) simplifies tion (28), it is convenient to neglect the terms in the second

and third line of Eq(28).
. . . . Although this cannot be done blindly, there are two cases
> QWA+ > IDAuS) where it appears legitimate.
‘ pimiK (a) If the ports consist of smooth homogeneous cylindrical
R - . . sections, it is expected that the pressure and chemical poten-
=X QAT D + _ZlK IPALD . (29  tials have almost constant value over the integration surfaces

=1D =1D i=1| ~ A~ ~ ~
v 7 S, so thaf og(x) +11,1] and[ u;(X) — i.] are very small.
This demonstrates the total symmetry of theKB- 1) (b) If the inlets are very long compared to the dimensions
X D(K+1) “conductance” tensomM that relates the gener- Of the port, it is to be expected that the above mentioned

. S A . A quantities(that reflect differences within a sectid@),) are
§1I|zed forces A, = Auiy to the generalized fluxes Q small compared to the pressure and potential drop across the

Ji,. To make this Point explicit let us use the convenient,ole system, so that the terms in the first line of E2)
notationQ=J, andIl = wy. This is standardsee, e.g., Ref. will dominate.

A. Periodic systems

B. Smooth inlets or long inlets
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We now make the assumption that one or both of thesgn direction 6. For anN-port “node,” the matrix is (2(N
conditions is fulfiled and proceed. Then, using again for_1yy2 ang gives the flowQ,, and total electric current
e _ . ,
compactness the ngtapo@e Jo and Tl Ko the rglauon exiting through the porty (y=1,... N—1), as a function
between the potentialg;, and the emerging fluxedi, at  of the pressure and electrostatic potential of pért(s
various ports for the two solutiond) and (2) of the linear- 1 N—1) relative to that of port OAf) andAfﬁ
=1,..., P 5

ized response problem read Equation(35) is replaced by symmetry relations for the
electric response,

W= 33 WA, (39
a=0N-1i=0K a=0N-1i=0K 2 ~
Iel7 _ |e|5
Note the difference with the case of periodic systems: A;ﬁa . o Ag?) . . (37)
here local potential$éfor each port appear, rather than po- Ads25=0Apg=0 Vi Ady ;) =0Apg=0
tential drops along a period. To restore the usual fact th he hvdrod .
linear response usually connects currents to potential diffe or the hydrodynamic response,
ences, we remark that the local conservation laws for the A A
flow and ionic species result at steady state in the obvious ( j) :( Qf ) (39)
(K+1) global conservation ruIesZa:QN_ljiazo.A Thian Ap, APy, 5=0Ad,=0 Ap, APy, =0Ad,=0
taking port 0 as the reference and defining hare;= u;
— uo, EQ. (33) can be reformulated as and for the electrohydrodynamic couplings,
Aoy~ Ay ) ;
S 0= 3 S WA, o [ 2 39
a=1N-1i=0K a=1N-1i=0K Ap . . AQ‘) . ~
(34 ’ APy 4 5=0A¢5=0 YAy y=0Apg=0

From then on, all the results and formalism of the previ- Equation(39) states precisely how in a periodic medium
ous Sec. IV A for periodic systems can be applied, and theross-direction streaming currer{es pressure drop along
relations obtained thergEgs.(30) and (32] hold also in the  generates an electric current aloag are related to cross-
present case, with the indices=1, ... N—1 replacingy  direction electro-osmotic effecta potential difference along
=1,...D, and theA z; having different definitions e, results in a flow along;). A similar statement holds to

This formal identity allows us to explore the conse-élate consequences of action on various ports of a “node.”
quences of the symmetry of the conductance tensor in a unithese equations are generalizations of relations in the paper
fied way below. by Mazur and Overbeekl] which dealt with the cas®
=1 (and homogeneous geometjiean explicit application
for the caseD =3 has been given above in the introduction
of the present paper.

A more explicit and practically useful expression of the  Ag a note, we remark that although H§8) was listed as
Onsager relation30) and (32) is describing the hydrodynamic response of the system, the co-
efficients appearing on its two sides potentially refl¢ens-

verse electroviscous effects, whereby a flow generates po-

tential drops that in turn produce electro-osmotic flows that

contribute to the global hydrodynamic response. Such effects
) are already present in straight channskse, e.g., the discus-
Let us explore briefly ways to use this general result. sion and references if14]), although usually weak unless

(i) If concentrations are not varied (no osmotic stresses) e channel is thin, the surface charge is strong and the ionic
All the rather formal approach above simplifies a lot if the St€ngth weak. The same limits should be relevant for the
concentrations do not vary. ThehlI=Ap, A =qAd, det(_a_ctabm_ty of transverse electroviscous effects. o
and the total electric curremt,==,_4Qq;J; naturally shows (if) ReS|_stance matrbOf course the reverse matrix giving
up. Then Eq(29) is replaced by ' the potentlal_ drops as functions of the currents is symmetric

too, so that in the general case:

C. Consequences of the symmetry of the conductance matrix

3, s

Ao - Au | -
F10 8 jujr 1150,y 21,590 Frl sl e ,m=0

S @QPABPHTAND =S @QPAPP+TPAHD)
(36)

Apiy Mis

s

Jiy

Jirylir,yy#i,»=0

(40)

oo #G.0 0
We have therefore symmetry relations for the simplified con-
ductance matrix. For periodic systems, this matrix is now In the absence of concentration biases, equations similar

5 . :
(2D)” and glvgs the. ﬂOY\QV_and total eleCt.”C curredteb to Egs.(37), (38), and(39) hold for the inversdresistance
through the unit cell in directiory, as a function of pressure quantities. For example electrohydrodynamic couplings are
and electrostatic potential drops over a perdgul; andA¢s  related by
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Ad AD - - - - AL
;ﬁy) :(I_p> w & i
Qs 65/¢($:0,Te|5:0 el, iely'¢y:0vé/3:0 Q2 —Am,

that relates a cross direction streaming potential to a cross- Jic1a=1 ~Apiz1a=1

direction electro-osmotically induced pressure drop in a hy- jizl,azz :[Cuyv]il':”r —A[Lizl,a:z (43

drodynamically closed system. L...r

(iii) Many more relations (but nothing newActually, as
was done for the simpler cases considered in their seminal 3, —AfLi_os
paper by Mazur and Overbedt], many relations can be o .
obtained in addition to those displayed in E¢35), (37), J22 —Apizzp

(39), (39), (40), and(41). Indeed up to now we have estab-
lished equalities between coefficients describing the response
of the system in situations where either all potential dropsvherel’=(K+1)D for a periodic system anfl=(K+ 1)
but one are fixed to zer@onductivity matriy or all currents ~ X(N—1) for a N-port node.

but one are fixed to zerresistance matrjx Actually one The alternative sortingby port9 yields
can consider many other combinations where for each direc- . . ) .
tion (or por) y and each speciagincluding the global flow Q —Am,
i=0) either the corresponding current or the corresponding 3. AL
potential drop is zero, but for one of those quantities in the i=le=1 Hi=la=1
system which is the driving force. Jizoa1 —Afli—p a1
For example, it is easy to demonstrate from the symmetry
of the matrix in Eq.(2) in the Introduction that for the sys- e =[L,,]v=% " ol (44)
tems depicted in the bottom of Fig. 1, Q, WOly=1,... 1 — A,
jl,2 _A/Z‘fl,Z
( A_ﬁf’s) =— ( 9—1> (42 32'2 - A[’vz,z
APy /iy ,40 leia/ Tgi_y =0 L i .
éz= Q2=

‘ ‘ The matricesC andL defined above are both symmetric
Ap3=0 Apj=1,3=0. and the two formalisms can be used indifferently.
This picture is of course easily adapted to the simpler case

. . L where there are no applied ionic concentration gradiesas,
Such equations are in some sense generalizations to moge bp 9

complex geometries of Sams law [15]; see[1] and Sec. -g., the Introduction

: : : ; (v) A last point.Let us close this section by recalling that
9.11.6 in[16]. Note that there is nothing new in these reIa"the most general form for the symmetry relation is the inte-

tions in the sense that they are all contained in the symmetrégral equationg27) and (28). To be able to replace the inte-

Worth pointing out that each of the roaponse cosficients g2 OVer €ach port surfac, by a local potentialosmotc
these Formule?s corresponds to a articEIar experiraith rﬁressure, chemical or electrostatic potentiahes a flux, one
P P P needs additional hypothesis: we have exploited here two

given boundary conditions so one needs to be careful in ractically important ones: periodicity and smooth or long
laying down properly the formalism to assess to what exter;E orts

the outcome of two different experiments are directly relate
to one anothefsee for example the discussion of the phe-
nomenology of electrokinetics in different experiments by
Lorenz[14]). To summarize, we have demonstrated that the electrohy-
(iv) A comment on matrix representatiobet us make drodynamic response of an electrolyte solution to applied
here a short practical statement: up to now the generalizegressures, electric fields, or chemical potential differences is
conductance has been described by a teNsavith compo-  described in the linear response regime by a symmetric ma-
nentsM;, 5. trix. This translates into general symmetry relati¢85s) and
It is often simpler to describe the response in terms of §40), and other combinationsee Sec. IV Giii)]. When os-
matrix, as was done for example in the Introduction, wheremotic effects can be neglectéao ionic concentration drops
all the flows and currents are treated as a multicomponerthe description can be further simplifieelg., Eqs(37), (39),
vector. The two forms are equivalent provided things areand(39)].
written properly. There are two convenient ways of writing  The proof presented here has a rather large range of va-
such linear systems: either sort the components by specidiglity, as it applies regardless of many features of the system
first, or by port or direction first. The first strategy leads to (topology, shape, geometry, homogeneity or amplitude of the
the following matrix: surface charge density or potentialhe main restriction is

V. DISCUSSION AND CONCLUDING REMARKS
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that the result is limited to the linear response regime. Aghors actually numerically demonstrated the symmetry of the
discussed in Sec. Il the extension of this regime in parametenatrix M for these situations. More generally, for this kind
space may be very system dependent, although an obviows$ numerical work, Onsager symmetry relations can be either
constraint is that the average applied fields be weaker thamsed as a control on the numerics by checking that they hold
the typical equilibrium ones in the charged double layersin the results, or taken for granted to bypass some computa-
Upon entering the nonlinear regime, which is clearly relevantions and save computing time.

for many high electric-field applications in microfluidics, = Another domain where these relations may find some use
there is noa priori reason for the “symmetry” between ef- is the on purpose fabrication of anisotropic microfluidic de-
fects to remain valid, and a case by case study is required. ®ices. In[8] such devices were shown to allow for the real-
much weaker restriction on our results is that the formalismizations of various functionalitie§low detection, transverse
used(in particular for the expressions of the chemical potenpumping, mixing. The symmetry of the matrix was there
tials and osmotic pressyrés specific to dilute electrolyte taken for granted, and used to relate the various coefficients
solutions. It is of course possible to perform the same prootiescribing these effects. This symmetry could be of use for
with a more general scheme, following Chap. X[, but  example to characterize microfabricated geometries indepen-
we chose to start with the equations of Sec. Il as they areently of their use: for example one could validate the fab-
commonly usedsee, e.g., the textbodi 6]). rication of an anisotropic structure for transverse electro-

Beyond the formal symmetry relations per se, our systemesmotic pumping(see [11] for a working example by
atic construction of the proof reveals a few noticeable feameasuring a transverse streaming current if this measurement
tures. is simpler to perform.

Quite remarkably, and as anticipated in the formulation of The relations presented in this paper for nonperiodic sys-
the problem(Sec. I), we never had to specify the value of tems(Sec. IV B) could also be of use to describe nodes or
the surface charge density on the surface of the walls. Howerossings in a microfluidic system. Indeed if these crossing
ever, as discussed in Sec. I, they definitely affect the valueareas are not small, it is necessary to take them into account
of the linear response coefficients, as they determingithe to describe the global response of the microfluidic network
for example. They likely also show up in an explicit compu- (i.e., they cannot be described by a set of simple scalar po-
tation of the range of applicability of the linear responsetentials and conservation laws as in Kirchhof’s laws for elec-
formalism. In a related way, we never had to specify thetrical circuity. To apply the results of Sec. IV, it may be
explicit geometry of the systelishape, topology and size of necessary to include in the “node” short sections of the
the walls. channel emerging from it, so as to justify the approximations

The formalism that we have developed is applicable tcat the beginning of Sec. IV B which allow to characterize the
pure hydrodynamics in the case where there is no electrokstate of an inlet by average scalar quantitigeneralized
netic coupling. Then only flow rates and pressure drops appotential$.
pear, but the description of nodes or structured media by In conclusion, as is common with explicit demonstrations
symmetric matrices remains true, the symmetry then relatingf Onsager symmetry relations, the outcome of this paper
cross channel hydrodynamic effe¢tee, e.g., Eq38)]. appears somewhat formal and not fundamentally surprising

Our systematic approach also highlights that when ad¢as the symmetry is built in the local equations used at the
dressing electrokinetic effects, one should keep in the debeginning. However, the careful writing down of such a
scription the ionic concentration differences and fluxes andormalism, along the lines of the thermodynamics of irre-
the osmotic terms. This point is often forgotten for the sim-versible processes, is a useful guide to connect with one
pler use of the sole global flow and electrical current vari-another the outcome of various experiments, the more as the
ables, which yields an easier and more compact formalisrsituation at hand can be rather compl@tectrokinetic ef-
(see, e.g., the Introduction of the present pap&o decide fects are complex even in simple geometries, and we are
whether or not this simple approach is applicable or not to aliscussing geometries with heterogeneities and broken sym-
specific experiment one should proceed with care. metries.

A field of application of this work would be some exten-
sion of the work by Marincet al. [6]. In that elegant paper,
equations similar to those of Sec. Il are solved numerically
for a few periodic porous geometries that are isotrgpic A.A. acknowledges support from The Ministede la Re-
least statisticallyand with constant surface charge. The au-cherche and helpful suggestions from Abe Stroock.
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