
PHYSICAL REVIEW E 69, 016306 ~2004!
Generalized Onsager relations for electrokinetic effects in anisotropic
and heterogeneous geometries
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We lay down a general formalism to describe the linear electrohydrodynamic response of systems of arbi-
trary topology, symmetry and heterogeneity, and through an explicit proof, we demonstrate a set of general
Onsager relations between the corresponding electrokinetic coefficients. This generalizes a classical result of
Mazur and Overbeek@P. Mazur and J.T.G. Overbeek, Recl. Trav. Chim. Pays-Bas.70, 83 ~1951!# to situations
that may become of practical relevance in particular in the field of microfluidic devices. Technically, our proof
of the symmetry of the generalized conductance matrix relies on an adaptation of the reciprocal theorem of
low-Reynolds-number hydrodynamics.
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I. INTRODUCTION

A few decades ago Mazur and Overbeek proved the e
tence of relations between electro-hydrodynamic coupli
in a capillary containing an electrolyte solution@1#. In par-
ticular, the magnitude of the electro-osmotic effect~the sol-
vent flow generated by the application of an electric field! is
directly related to that of the streaming current effect~a pres-
sure drop across the capillary can drive an electric cur
between its ends!. This relation holds as a so-called Onsag
relation, valid within linear response of fluxes to fields in t
vicinity of thermodynamic equilibrium~see De Groot and
Mazur @2#!.

Formally their result is equivalent to the following stat
ment: the matrix that relates, in the linear response regi
the flow of liquidQ and the electrical currentI el through the
capillary ~see Fig. 1, top!, to the pressure dropDp and elec-
trostatic potential dropDf across that channel,

FQ

I el
G5FM11 M12

M21 M22
GF 2Dp

2DfG , ~1!

is a symmetric matrixM125M21. The sign convention is
such thatM is a positive definite matrix.

Technically the proof of Mazur and Overbeek consisted
three pieces. First they showed explicitly, using coupled lo
equations for hydrodynamics and electrostatics, that
above-mentioned relation is truefor a capillary of arbitrary
but constant cross section, and of constant surface (z
potential. Second, using a general close-to-equilibrium th
modynamic formulation, they showed that one should exp
such relationsfor a channel connecting two points with ide
tical ionic concentrations. This second proof holds regard
less of the specific description of electrohydrodynam
within the channel, and regardless of the channel wall pr
erties. In a third step, they derived subsequent relations f
network of such 1D channels.

*Author to whom all correspondence should be addressed. E
address: armand@turner.pct.espci.fr
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In the present paper, we complete the picture by provid
a generalized explicit proof of Onsager relations betwe
various electrokinetic coefficients, starting from the co
monly used microscopic equations for hydrodynamics, el
trostatics and ion transport in dilute electrolyte solution
This proof holds for geometries ofarbitrary surface proper-
ties and shapes@e.g., arbitrary strength and distribution o
the surface~zeta! potential#, of arbitrary topologies~e.g., de-
vices with many inlets that cannot be described simply
networks of 1D channels!, and for variations of the ionic
concentrations.

A motivation for this study is the developing possibilitie
offered by microfabrication to tailor microfluidic or porou
media of controlled heterogeneity and anisotropy for fun
tional purposes such as~pumping, flow control, mixing,
separation! @3–11#. In particular our proof is relevant fo
transverse effects in patterned microchannels, for node
circuits of microchannels, and for anisotropic~e.g., layered!
porous materials.

To provide the reader with a flavor of our results, w
provide two examples of consequences of our general
proach~see the bottom of Fig. 1!.

ail
FIG. 1. Top: a simple capillary. Bottom: examples of geometr

covered by our approach, a 4-branch node~left! and the unit cell of
a periodic porous material~right!.
©2004 The American Physical Society06-1
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E. BRUNET AND A. AJDARI PHYSICAL REVIEW E69, 016306 ~2004!
~a! The linear response of the 4-branch node in Fig. 1
described~in the absence of applied ionic gradients! by a
symmetricmatrix relating the flow rate and electrical curre
exiting through each branchQa and I ela (a50, . . . ,3), to
the pressures and potential~relative to that of the inlet 0!
Dpa5pa2p0 andDfa5fa2f0:

3
Q1

Q2

Q3

I el1

I el2

I el3

4 53
M11 M12 . . . .

M21 M22 . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

4 3
2Dp1

2Dp2

2Dp3

2Df1

2Df2

2Df3

4 ~2!

with the conservation rulesQ05Q11Q21Q3 and I el0

5I el11I el21I el3. Our main point is that this matrix is sym
metric: Muv5M vu . So for exampleM26, which describes
how an electrostatic potential applied on branch 3 gener
a flow in branch 2~cross channel electro-osmosis!, is equal
to M62 which describes how a pressure applied on branc
generates an electric current in branch 3~cross-channe
streaming potential!. In passing we also clarify when and i
what sense one can use asingle pressurepa and asingle
potential fa to characterize~the section of! an inlet, and
therefore write compact expressions such as Eqs.~1! and~2!.

~b! Currents through a 3D periodic porous medium, ag
in the absence of net ionic gradients can also be describe
Eq. ~2!, with now theQa and I ela being the flow and elec
trical current along one of the periodicity directiona, and
theDpa andDfa being the pressure and potential drop ov
a period in this direction~Fig. 1, bottom left!. Again cross
effects are related by the symmetry of the matrix.

We take a few steps to obtain these results, and procee
follows.

In Sec. II we define notations and our starting equatio
We then present their equilibrium solution, and the equati
describing linear response for small deviations from
equilibrium.

In Sec. III, we perform a calculation analogous to t
reciprocal theorem of low-Reynolds-number hydrodynam
which yields the essence of our generalized symmetry pr
at a formal level however.

To make things more explicit and practical, we special
in Sec. IV to two cases:~Sec. IV A! a periodic system, and
~Sec. IV B! a system with ports or inlets that are eith
smooth~so that integral quantities such as potential and p
sure are well defined for each of them! or distant from one
another~compared to the ports diameters of the ports!. We
then explore consequences of the symmetry proof for th
two cases
~Sec. IV C!.

We close in Sec. V with a summary of our results, a f
technical comments, and connections to related papers in
literature.
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II. STARTING POINT: LOCAL EQUATIONS
AND NOTATIONS

As depicted in Fig. 2, we consider a dilute electroly
solution in a region of space bounded by~1! walls ~that can
be internal or external! and ~2! N surfacesSa ~with a
50, . . . ,N21) through which the electrolyte is connecte
to the outside, which we will call ‘‘ports’’ or ‘‘inlets’’ indif-
ferently (N52 corresponds to the usual case of a sim
channel!.

Bulk equations.The solvent hostsK ionic species of re-
spective ionic chargeqi and local concentrationci(x). The
local charge density is thusr5( i 51,Kqici . The solution is
taken incompressible and of viscosityh, and inertial effects
are assumed negligible. Thus the flow fieldv is given by

“•s1rE50, ~3!

“•v50, ~4!

where the hydrodynamic stress tensor is

s52pI1h~ t
“v1“v!, ~5!

with p the pressure.E52“f is the local electric field,
given by the Poisson equation

e“2f1r50. ~6!

We focus on steady-state situations where the concen
tion fieldsci are governed by time independent conservat
equations for the corresponding currents:

j i52mici“m i1civ, ~7!

“• j i50, ~8!

where m i(x)5qif1kBT ln(ci) is the chemical potential o
speciesi, andmi its mobility.

Let us also introduce, for reasons that will become cl
later,

P5p2posmotic5p2kBT (
i 51,K

ci , ~9!

FIG. 2. Scheme of a volume of electrolyte~white! bounded by
external and internal walls~hatched!, and in contact with the oute
world throughN ports ~hereN55).
6-2
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GENERALIZED ONSAGER RELATIONS FOR . . . PHYSICAL REVIEW E 69, 016306 ~2004!
s052PI1h~ t
“v1“v!. ~10!

Equation~3! can be modified to read

“•s02 (
i 51,K

ci“m i50. ~11!

Boundary conditions.The above set of equation must b
supplemented by boundary conditions on the walls and
the ports’ surfaces.

On the walls, we require that there is no ion injection
absorption, and impose a no-slip boundary condition for
flow:

j i uwall•n50, ~12!

vuwall50, ~13!

wheren is the local normal to the wall~oriented outwards
from the solution!. In principle, we then have to add
boundary condition for the electrostatic potentialf, related
to the local surface property of the wall. This local conditi
is typically that the surface potential is imposed or tha
given surface charge density results in constraints for
normal gradient of the potential. However, it turns out th
we need not specify this ‘‘electrical geometry’’ of the pro
lem for the proof presented in this paper. Therefore, to li
the notations we proceed without formally expressing
electrostatic boundary condition on the walls.

The last elements to close the problem are the bound
conditions on the ports surfacesSa , which characterize the
external forcing on the system. Depending on the problem
hand, these local boundary conditions can be expresse
terms of conditions on either the potentials (f,p,m i), or the
fluxes (v,j i), or a combination of both.

The bulk equations together with the boundary conditio
constitute a well-defined problem, whereby the system
sponds to the applied forcing described by the boundary c
ditions on the ports surface. Note that this response is
general nonlinear due to the nonlinear couplings in Eqs.~3!
and ~7!.

Thermodynamic equilibrium.At thermodynamic equilib-
rium, the currents and flow are zero,veq50, j ieq50, and the
related potentials are spatially homogeneous“Peq50 and
“m ieq50, the latter corresponding to Boltzmann distrib
tions for the ionic concentrationscieq5ci

0exp„2(qifeq)/
(kBT)….

Linear response.To describe the linear response of t
system, we denote with a hat the perturbations about
equilibrium values given above~e.g.,v5veq1 v̂, j i5 j ieq1 ĵ ,
etc.!. We then linearize the equations written above by reta
ing only terms that are first order terms in ‘‘hat’’ quantitie
We therefore focus on the solutions to the following set
equations:

“•ŝ1 r̂Eeq1reqÊ50, ~14!

“• v̂50, ~15!
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ŝ52 p̂I1h~ t
“ v̂1“ v̂! ~16!

and Ê52“f̂, where

e“2f̂1 r̂50. ~17!

ĵ i52micieq“m̂ i1cieqv̂, ~18!

“• ĵ i50, ~19!

and also

“•ŝ02 (
i 51,K

cieq“m̂ i50. ~20!

The boundary conditions are a direct transposition of th
for the full problem

ĵ i uwall•n50, ~21!

v̂uwall50. ~22!

For reasons stated above we will not explicit the lineariz
electrostatic boundary conditions. Note, however, that t
boundary condition for theperturbation ofthe electrostatic
potential f̂ is in general homogeneous, with no referen
any more to the surface potential or charge density of
walls @this information is now fully contained in thecieq(x)
fields#.

This set of equations~14!–~22! and the unwritten electro
static boundary condition is now a linear one, whereby
local flows and fields respond in proportion and additively
the effects applied on the ports surfacesSa . We will from
now on limit ourselves to this linear response regime.

Let us however point out that the range of validity of th
linearization procedure is difficult to express in a gene
way. Formally, we have neglectedr̂Ê in Eq. ~14!,
2miĉi“m̂ i1 ĉi v̂ in Eq. ~18!, and2( i 51,Kĉi“m̂ i in Eq. ~20!.
It is far from obvious to assert in a general way when tho
terms are, at steady state, negligible compared to those li
in the drivings. Physically, a clear requirement is that t
structure of the charged double layers is only weakly d
torted. This translates into the requirement that locally ‘‘a
plied’’ chemical potential gradients~created by potentia
drops or concentration differences between the ports! be
weaker thanefs /lD and kBT/lD ~where fs represents a
typical surface potential andlD the Debye length!, and so
should the typical local ‘‘applied’’ convective hydrodynam
dragv̂/mi in these charged layers. However these local ‘‘a
plied’’ quantities may depend in a complex fashion on t
macroscopically applied driving. For example in a poro
medium, the local field in a thin slot may be significant
larger than the macroscopically applied one. In general,
domain of validity of linear response thus depends on g
metrical features of the specific system~tortuosity, surface
charge patterns, etc.!.
6-3
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III. RECIPROCAL THEOREM

We start by a variant of the reciprocal theorem for ze
Reynolds-number hydrodynamics@12#, adapted to electroki-
netic phenomena~in a way related but different than its ad
aptation in the nice derivation of electrophoretic mobiliti
of particles by Teubner@13#!. We consider two independen
solutions of the linearized problem~around the same equilib
rium solution!, that we design by superscripts~1! and ~2!.
These two solutions correspond to different external fo
ings, i.e., different boundary conditions on the surfaces of
ports ~for example one could be generated by applied pr
sure differences, and the other by potential differences,
we need not specify anything at this point!. Then thanks to
incompressibility for solution~2!:

“•~ŝ0
(1)
• v̂(2)!5~“•ŝ0

(1)!• v̂(2)

1
1

2
h„t“ v̂(1)1“ v̂(1)

…:~ t
“ v̂(2)1“ v̂(2)!.

~23!

Then from Eq.~20!, with “m ieq50:

~“•ŝ0
(1)!• v̂(2)5 (

i 51,K
cieq“m̂ i

(1)
• v̂(2) ~24!

which can be related to other quantities by

“•~m̂ i
(1)ĵ i

(2)!5“m̂ i
(1)
• ĵ i

(2)

52micieq“m̂ i
(1)
•“m̂ i

(2)1“m̂ i
(1)
•~cieqv̂

(2)!

~25!

where the first equality holds because the ionic currents
divergence free.

Using the three results above, the following quantity
symmetrical in the exchange between superscripts~1! and
~2!:

“•~ŝ0
(1)
• v̂(2)!2“•S (

i 51,K
m̂ i

(1)ĵ i
(2)D

5“•~ŝ0
(2)
• v̂(1)!2“•S (

i 51,K
m̂ i

(2)ĵ i
(1)D . ~26!

The next step consists in integrating these relations o
the volume occupied by the electrolyte solution. We tra
form the integral of divergences into fluxes through the s
face bounding the electrolyte. Given the boundary conditi
~12! and~13!, that apply similarly to the linearized perturba
tions v̂ and ĵ i , the surface integrals over the walls vanish a
we are left with the fluxes through the ports surfaces on
Therefore, the above symmetry, reads in integral form
01630
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(
a50,N21

EE
Sa

dSS n•ŝ0
(1)
• v̂(2)2 (

i 51,K
~m̂ i

(1)n• ĵ i
(2)! D

5 (
a50,N21

EE
Sa

dSS n•ŝ0
(2)
• v̂(1)2 (

i 51,K
~m̂ i

(2)n• ĵ i
(1)! D .

~27!

This symmetry is actually that of the linear operator r

lating the currentsv̂ and ĵ i through the boundaries of the

system, to the generalized forcesŝ0 and 2m̂ i applied there.
As such this expression is the core of this paper, in a rat
formal presentation.

To get closer to a more operational form such as t
of Eq. ~2! in the Introduction, a first step is to explicit fo
each port the average values of the driving potentia
and the fluxes emerging from this port. Let us defineQ̂a

5**Sa
dSn• v̂ and Ĵia5**Sa

dSn• ĵ i the flow and ionic

fluxes emerging from porta, and P̂a and m̂ ia the average

values of P̂ and m̂ i over the port sectionSa . Then the
previous equation reads

2 (
a50,N21

Q̂a
(2)P̂a

(1)2 (
a50,N21

(
i 51,K

Ĵia
(2)m̂ ia

(1)

1 (
a50,N21

EE
Sa

dSn•„ŝ0~x!1P̂a1…(1)
• v̂(2)

2 (
a50,N21

(
i 51,K

EE
Sa

dS„@m̂ i~x!2m̂ ia# (1)n• ĵ i
(2)
…

5same formula with~1↔2!. ~28!

Although this formula appears more cumbersome than
previous one~27!, we have actually made progress: inde
the first line is in a form that permits the compact mat
treatment alluded to in the Introduction, and in the two fo
lowing ones appear quantities such as@2P̂(x)11P̂a1# and

@m̂ i(x)2m̂ ia# which are zero when averaged over the p
areaSa .

IV. EXPLICIT ONSAGER SYMMETRY RELATIONS

In this section we focus on three situations where th
terms@second and third line of Eq.~28!# either cancel out or
are negligible compared to those of the first line. If the s
tem is periodic the cancellation is exact, a case treated
Sec. IV A. These terms can be neglected in two other sit
tions that we analyze in Sec. IV B: systems with ‘‘smoo
inlets’’ and systems with ‘‘long inlets.’’ In both Secs. IV A
and IV B we show that a general conductance matrix is sy
metric, and bring the two cases to a common formalism,
as to be able to explore in Sec. IV C in a unified way t
explicit consequences of this symmetry for the two cases
6-4



d
s

ri
al
c

tu
b

e

ea
th

e

-

n

-

s

m

he

h

s

ith
a

-
nd

ses

cal
ten-
ces

ns
ed

the

al
e
he
a

ar
r
ls

by
-

n

GENERALIZED ONSAGER RELATIONS FOR . . . PHYSICAL REVIEW E 69, 016306 ~2004!
A. Periodic systems

Suppose that the system we consider is actually perio
so that we can focus on a unit cell, repeated at distanceLg
along the vectorseg ~that need not be orthogonal!; see Fig. 3.
The system need not have additional symmetries such
isotropy or centrosymmetry. Obviously the number of pe
odicity directionsD is smaller than or equal to the spati
dimension ~typically 3!. D51 corresponds to a periodi
channel,D52 to a periodic slab geometry~e.g., that of Fig.
3!, andD53 is a three-dimensional periodic medium~see,
e.g., Fig. 1, bottom left!.

Due to the periodicity of the system, the solutions~1! and
~2! described in Sec. III are then also periodic, which ac
ally means that the velocities and currents are periodic,

that the potentialsP̂ and m̂ i increase over a unit cell in th

direction eg by fixed valuesDP̂g and Dm̂ ig . As a conse-

quence, the quantities@ŝ0(x)1P̂a1# and @m̂ i(x)2m̂ ia# in
Eq. ~28! are periodic, so that the terms where they app
cancel out when summing on the two opposite faces of
unit cell in a given direction.

So updating the notations in Eq.~28! so thatQ̂g and Ĵig
are the flow and ionic fluxes through the ports of the unit c
facing the directiong, the symmetry relation~27! simplifies
to

(
g51,D

Q̂g
(2)DP̂g

(1)1 (
g51,D

(
i 51,K

Ĵig
(2)Dm̂ ig

(1)

5 (
g51,D

Q̂g
(1)DP̂g

(2)1 (
g51,D

(
i 51,K

Ĵig
(1)Dm̂ ig

(2) . ~29!

This demonstrates the total symmetry of the D(K11)
3D(K11) ‘‘conductance’’ tensorM that relates the gener

alized forces2DP̂g ,2Dm̂ ig to the generalized fluxes Qˆ
g ,

Ĵig . To make this point explicit let us use the convenie

notationQ̂5 Ĵ0 andP̂5m̂0. This is standard~see, e.g., Ref.

FIG. 3. Top viewof a slab geometry with two nonorthogon
periodicity directions (D52) and with no obvious symmetry of th
unit cell. The system is bounded by two parallel solid walls in t
third perpendicular direction. The currents are periodic, so the qu
tities flowing through the periodic repeats of connecting ports
constant~here only the net flowQ is depicted but this holds also fo
the ionic currents!. In contrast the local values of the potentia
increase by a constant value from one unit cell to the next.
01630
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@2#, Chap. XV!, with the index zero describing global quan
tities in the system andi 51,K the ionic species~alterna-
tively one can describe the solvent explicitly as a specie!.
The reason whyP is the proper ‘‘potential’’ related toQ is
also described in@2#. Then the linear response of the syste
is defined by

Ĵig5Mig, j d~2Dm̂ j d! ~30!

with indicesi andj running from 0 toK, andg andd from 1
to D, and summation over repeated indices is implicit. T
minus sign here is such thatM is a positive matrix@actually
( i ,g Ĵig(2Dm̂ ig) is the dissipation rate in the system, whic
is always positive#. Equation~29! now reads

Dm̂ ig
(1)~Mig, j d2M j d,ig!Dm̂ j d

(2)50 ~31!

whatever the values of the potential drops, which leads uto
the central result of this paper in compact form:

Mig, j d5M j d,ig . ~32!

B. Smooth inlets or long inlets

We now focus on the case of a nonperiodic system, w
N ports, that could be thought of as a complex node in
network, or maybe a complex subsection of the network~see
Fig. 4!. To be able to work practically with the integral rela
tion ~28!, it is convenient to neglect the terms in the seco
and third line of Eq.~28!.

Although this cannot be done blindly, there are two ca
where it appears legitimate.

~a! If the ports consist of smooth homogeneous cylindri
sections, it is expected that the pressure and chemical po
tials have almost constant value over the integration surfa

Sa , so that@ŝ0(x)1P̂a1# and@m̂ i(x)2m̂ ia# are very small.
~b! If the inlets are very long compared to the dimensio

of the port, it is to be expected that the above mention
quantities~that reflect differences within a sectionSa) are
small compared to the pressure and potential drop across
whole system, so that the terms in the first line of Eq.~28!
will dominate.

n-
e

FIG. 4. Scheme of media connected to the outer world
‘‘smooth sections’’~thicker lines! of constant surface characteris
tics, so that the potentialsPa , m ia are well defined and constant o
a section~dashed lines!. In this specific case there areN55 ports.
6-5
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E. BRUNET AND A. AJDARI PHYSICAL REVIEW E69, 016306 ~2004!
We now make the assumption that one or both of th
conditions is fulfilled and proceed. Then, using again
compactness the notationsQ5J0 and P5m0, the relation
between the potentialsm̂ ia and the emerging fluxesĴia at
various ports for the two solutions~1! and ~2! of the linear-
ized response problem read

(
a50,N21

(
i 50,K

Ĵia
(2)m̂ ia

(1)5 (
a50,N21

(
i 50,K

Ĵia
(1)m̂ ia

(2) . ~33!

Note the difference with the case of periodic system
here local potentials~for each port! appear, rather than po
tential drops along a period. To restore the usual fact
linear response usually connects currents to potential di
ences, we remark that the local conservation laws for
flow and ionic species result at steady state in the obvi
(K11) global conservation rules:(a50,N21Ĵia50. Then
taking port 0 as the reference and defining hereDm̂ i5m̂ i

2m̂0, Eq. ~33! can be reformulated as

(
a51,N21

(
i 50,K

Ĵia
(2)Dm̂ ia

(1)5 (
a51,N21

(
i 50,K

Ĵia
(1)Dm̂ ia

(2) .

~34!

From then on, all the results and formalism of the pre
ous Sec. IV A for periodic systems can be applied, and
relations obtained there@Eqs.~30! and ~32# hold also in the
present case, with the indicesa51, . . . ,N21 replacing g

51, . . . ,D, and theDm̂ i having different definitions.
This formal identity allows us to explore the cons

quences of the symmetry of the conductance tensor in a
fied way below.

C. Consequences of the symmetry of the conductance matrix

A more explicit and practically useful expression of t
Onsager relations~30! and ~32! is

S Ĵig

Dm̂ j d
D

Dm̂ j 8d8u( j 8,d8)Þ( j ,d)50

5S Ĵ j d

Dm̂ ig
D

Dm̂ i 8g8u( i 8,g8)Þ( i ,g)50

.

~35!

Let us explore briefly ways to use this general result.
(i) If concentrations are not varied (no osmotic stresse

All the rather formal approach above simplifies a lot if t
concentrations do not vary. ThenDP5Dp, Dm i5qiDf,
and the total electric currentI el5( i 51,KqiJi naturally shows
up. Then Eq.~29! is replaced by

(
g

~Q̂g
(2)D p̂g

(1)1 Î elg
(2)Df̂g

(1)!5(
g

~Q̂g
(1)D p̂g

(2)1 Î elg
(1)Df̂g

(2)!.

~36!

We have therefore symmetry relations for the simplified c
ductance matrix. For periodic systems, this matrix is n
(2D)2 and gives the flowQg and total electric currentI elg
through the unit cell in directiong, as a function of pressur
and electrostatic potential drops over a periodD p̂d andDf̂d
01630
e
r

:

at
r-
e
s

-
e

i-

).

-

in direction d. For an N-port ‘‘node,’’ the matrix is „2(N
21)…2, and gives the flowQg and total electric currentI elg
exiting through the portg (g51, . . . ,N21), as a function
of the pressure and electrostatic potential of portd (d
51, . . . ,N21) relative to that of port 0,D p̂d andDf̂d .

Equation~35! is replaced by symmetry relations for th
electric response,

S Î elg

Df̂d
D

Df̂d8Þd50,D p̂b50

5S Î eld

Df̂g
D

Df̂g8Þg50,D p̂b50

~37!

for the hydrodynamic response,

S Q̂g

D p̂d
D

D p̂d8Þd50,Df̂b50

5S Q̂d

D p̂g
D

D p̂g8Þg50,Df̂b50

~38!

and for the electrohydrodynamic couplings,

S Î elg

D p̂d
D

D p̂d8Þd50,Df̂b50

5S Q̂d

Df̂g
D

Df̂g8Þg50,D p̂b50

. ~39!

Equation~39! states precisely how in a periodic mediu
cross-direction streaming currents~a pressure drop alonged
generates an electric current alongeg) are related to cross
direction electro-osmotic effects~a potential difference along
eg results in a flow alonged). A similar statement holds to
relate consequences of action on various ports of a ‘‘nod
These equations are generalizations of relations in the p
by Mazur and Overbeek@1# which dealt with the caseD
51 ~and homogeneous geometries!. An explicit application
for the caseD53 has been given above in the introductio
of the present paper.

As a note, we remark that although Eq.~38! was listed as
describing the hydrodynamic response of the system, the
efficients appearing on its two sides potentially reflect~trans-
verse! electroviscous effects, whereby a flow generates
tential drops that in turn produce electro-osmotic flows t
contribute to the global hydrodynamic response. Such effe
are already present in straight channels~see, e.g., the discus
sion and references in@14#!, although usually weak unles
the channel is thin, the surface charge is strong and the i
strength weak. The same limits should be relevant for
detectability of transverse electroviscous effects.

(ii) Resistance matrix.Of course the reverse matrix givin
the potential drops as functions of the currents is symme
too, so that in the general case:

S Dm̂ ig

Ĵ j d
D

Ĵ j 8d8u( j 8,d8)Þ( j ,d)50

5S Dm̂ j d

Ĵig
D

Ĵi 8g8u( i 8,g8)Þ( i ,g)50

.

~40!

In the absence of concentration biases, equations sim
to Eqs.~37!, ~38!, and~39! hold for the inverse~resistance!
quantities. For example electrohydrodynamic couplings
related by
6-6
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S Df̂g

Q̂d
D

Q̂d8Þd50,Î elb50

5S D p̂d

Î elg
D

Î elg8Þg50,Q̂b50

~41!

that relates a cross direction streaming potential to a cr
direction electro-osmotically induced pressure drop in a
drodynamically closed system.

(iii) Many more relations (but nothing new).Actually, as
was done for the simpler cases considered in their sem
paper by Mazur and Overbeek@1#, many relations can be
obtained in addition to those displayed in Eqs.~35!, ~37!,
~38!, ~39!, ~40!, and~41!. Indeed up to now we have esta
lished equalities between coefficients describing the respo
of the system in situations where either all potential dro
but one are fixed to zero~conductivity matrix! or all currents
but one are fixed to zero~resistance matrix!. Actually one
can consider many other combinations where for each di
tion ~or port! g and each speciesi ~including the global flow
i 50) either the corresponding current or the correspond
potential drop is zero, but for one of those quantities in
system which is the driving force.

For example, it is easy to demonstrate from the symme
of the matrix in Eq.~2! in the Introduction that for the sys
tems depicted in the bottom of Fig. 1,

S Df̂3

D p̂1
D

Î eli 51,2,350

Q̂250

D p̂350

52S Q̂1

Î el3
D

Î eli 51,250

Q̂250

D p̂i 51,350.

~42!

Such equations are in some sense generalizations to
complex geometries of Saxe´n’s law @15#; see@1# and Sec.
9.11.6 in@16#. Note that there is nothing new in these re
tions in the sense that they are all contained in the symm
of the original conductance matrixM ~32!. However it is
worth pointing out that each of the response coefficients
these formulas corresponds to a particular experiment~with
given boundary conditions!, so one needs to be careful
laying down properly the formalism to assess to what ext
the outcome of two different experiments are directly rela
to one another~see for example the discussion of the ph
nomenology of electrokinetics in different experiments
Lorenz @14#!.

(iv) A comment on matrix representation.Let us make
here a short practical statement: up to now the general
conductance has been described by a tensorM with compo-
nentsMig, j d .

It is often simpler to describe the response in terms o
matrix, as was done for example in the Introduction, wh
all the flows and currents are treated as a multicompon
vector. The two forms are equivalent provided things
written properly. There are two convenient ways of writin
such linear systems: either sort the components by spe
first, or by port or direction first. The first strategy leads
the following matrix:
01630
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3
Q̂1

Q̂2

. . .

Ĵi 51,a51

Ĵi 51,a52

. . .

Ĵ2,1

Ĵ2,2

. . .

4 5@Cu,v#u51, . . . ,G

v51, . . . ,G3
2Dp̂1

2Dp̂2

. . .

2Dm̂ i 51,a51

2Dm̂ i 51,a52

. . .

2Dm̂ i 52,1

2Dm̂ i 52,2

. . .

4 , ~43!

whereG5(K11)D for a periodic system andG5(K11)
3(N21) for a N-port node.

The alternative sorting~by ports! yields

3
Q̂1

Ĵi 51,a51

Ĵi 52,a51

. . .

Q̂2

Ĵ1,2

Ĵ2,2

. . .

4 5@Lu,v#u51, . . . ,G

v51, . . . ,G3
2Dp̂1

2Dm̂ i 51,a51

2Dm̂ i 52,a51

. . .

2Dp̂2

2Dm̂1,2

2Dm̂2,2

. . .

4 . ~44!

The matricesC andL defined above are both symmetr
and the two formalisms can be used indifferently.

This picture is of course easily adapted to the simpler c
where there are no applied ionic concentration gradients~see,
e.g., the Introduction!.

(v) A last point.Let us close this section by recalling th
the most general form for the symmetry relation is the in
gral equations~27! and ~28!. To be able to replace the inte
gral over each port surfaceSa by a local potential~osmotic
pressure, chemical or electrostatic potential! times a flux, one
needs additional hypothesis: we have exploited here
practically important ones: periodicity and smooth or lo
ports.

V. DISCUSSION AND CONCLUDING REMARKS

To summarize, we have demonstrated that the electro
drodynamic response of an electrolyte solution to appl
pressures, electric fields, or chemical potential difference
described in the linear response regime by a symmetric
trix. This translates into general symmetry relations~35! and
~40!, and other combinations@see Sec. IV C~iii !#. When os-
motic effects can be neglected~no ionic concentration drops!
the description can be further simplified@e.g., Eqs.~37!, ~38!,
and ~39!#.

The proof presented here has a rather large range of
lidity, as it applies regardless of many features of the sys
~topology, shape, geometry, homogeneity or amplitude of
surface charge density or potential!. The main restriction is
6-7
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that the result is limited to the linear response regime.
discussed in Sec. II the extension of this regime in param
space may be very system dependent, although an obv
constraint is that the average applied fields be weaker
the typical equilibrium ones in the charged double laye
Upon entering the nonlinear regime, which is clearly relev
for many high electric-field applications in microfluidic
there is noa priori reason for the ‘‘symmetry’’ between ef
fects to remain valid, and a case by case study is require
much weaker restriction on our results is that the formali
used~in particular for the expressions of the chemical pote
tials and osmotic pressure! is specific to dilute electrolyte
solutions. It is of course possible to perform the same pr
with a more general scheme, following Chap. XV in@2#, but
we chose to start with the equations of Sec. II as they
commonly used~see, e.g., the textbook@16#!.

Beyond the formal symmetry relations per se, our syste
atic construction of the proof reveals a few noticeable f
tures.

Quite remarkably, and as anticipated in the formulation
the problem~Sec. II!, we never had to specify the value o
the surface charge density on the surface of the walls. H
ever, as discussed in Sec. II, they definitely affect the val
of the linear response coefficients, as they determine thecieq
for example. They likely also show up in an explicit comp
tation of the range of applicability of the linear respon
formalism. In a related way, we never had to specify
explicit geometry of the system~shape, topology and size o
the walls!.

The formalism that we have developed is applicable
pure hydrodynamics in the case where there is no electr
netic coupling. Then only flow rates and pressure drops
pear, but the description of nodes or structured media
symmetric matrices remains true, the symmetry then rela
cross channel hydrodynamic effects@see, e.g., Eq.~38!#.

Our systematic approach also highlights that when
dressing electrokinetic effects, one should keep in the
scription the ionic concentration differences and fluxes a
the osmotic terms. This point is often forgotten for the si
pler use of the sole global flow and electrical current va
ables, which yields an easier and more compact formal
~see, e.g., the Introduction of the present paper!. To decide
whether or not this simple approach is applicable or not t
specific experiment one should proceed with care.

A field of application of this work would be some exte
sion of the work by Marinoet al. @6#. In that elegant paper
equations similar to those of Sec. II are solved numerica
for a few periodic porous geometries that are isotropic~at
least statistically! and with constant surface charge. The a
-
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thors actually numerically demonstrated the symmetry of
matrix M for these situations. More generally, for this kin
of numerical work, Onsager symmetry relations can be eit
used as a control on the numerics by checking that they h
in the results, or taken for granted to bypass some comp
tions and save computing time.

Another domain where these relations may find some
is the on purpose fabrication of anisotropic microfluidic d
vices. In@8# such devices were shown to allow for the rea
izations of various functionalities~flow detection, transverse
pumping, mixing!. The symmetry of the matrix was ther
taken for granted, and used to relate the various coefficie
describing these effects. This symmetry could be of use
example to characterize microfabricated geometries indep
dently of their use: for example one could validate the fa
rication of an anisotropic structure for transverse elect
osmotic pumping~see @11# for a working example! by
measuring a transverse streaming current if this measurem
is simpler to perform.

The relations presented in this paper for nonperiodic s
tems ~Sec. IV B! could also be of use to describe nodes
crossings in a microfluidic system. Indeed if these cross
areas are not small, it is necessary to take them into acc
to describe the global response of the microfluidic netw
~i.e., they cannot be described by a set of simple scalar
tentials and conservation laws as in Kirchhof’s laws for ele
trical circuits!. To apply the results of Sec. IV, it may b
necessary to include in the ‘‘node’’ short sections of t
channel emerging from it, so as to justify the approximatio
at the beginning of Sec. IV B which allow to characterize t
state of an inlet by average scalar quantities~generalized
potentials!.

In conclusion, as is common with explicit demonstratio
of Onsager symmetry relations, the outcome of this pa
appears somewhat formal and not fundamentally surpris
~as the symmetry is built in the local equations used at
beginning!. However, the careful writing down of such
formalism, along the lines of the thermodynamics of irr
versible processes, is a useful guide to connect with
another the outcome of various experiments, the more as
situation at hand can be rather complex~electrokinetic ef-
fects are complex even in simple geometries, and we
discussing geometries with heterogeneities and broken s
metries!.
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